6 Nov 2014 / Osram /

Osram achieves record figures with green LEDs

The “Hi-Q-LED” project funded by Germany’s Federal Ministry of Education and Research (BMBF) has made pioneering advances with green LEDs, greatly diminishing what is known as the “green gap” phenomenon – the significant drop in efficacy in the green spectral range. The result is a green-emitting LED based on indium gallium nitride (InGaN) semiconductors which achieves a record efficacy of 147 lumens per watt (lm/W) at a wavelength of 530 nanometers (nm) and a spectral width of 35 nm. In addition, another green LED developed by combining a blue chip with a phosphor converter has achieved a record-breaking efficacy exceeding 200 lm/W.

As part of the “LED Lead Market Initiative” funded by the BMBF, the working group for “Efficient LED Solutions with High Color Rendering Indices” in the “Hi-Q-LED” project headed by Osram Opto Semiconductors has developed two pathbreaking green LED prototypes.

Green all-InGaN LEDs close the “green gap”

Conventional LEDs show a significant efficacy drop at wavelengths above 500 nm – a phenomenon known as the “green gap”. Research activities in the framework of the project have enabled the development of a narrowband green LED with a record efficacy of 147 lm/W for a chip size of 1 mm2 and a driving current of 350 mA (current density: 45 A/cm2). The LED has a central wavelength of 530 nm and a forward voltage of 2.93 volts (V) at this current density. A reduction of the carrier density in the light-emitting layers and a significantly improved material quality were the key factors behind this breakthrough. Thanks to a significantly reduced dependency of the efficacy on the operating current compared to conventional green LEDs, the LED prototype shows significantly improved performance at higher current densities and achieves as much as 338 lumen (lm) at 125 A/cm2. “InGaN-based LEDs, in which the light output is generated by an InGaN semiconductor exclusively, offer a  much more narrowband emission with a spectral width of approximately 35 nm compared to green LEDs that are based on phosphor conversion. This breakthrough is an enabling technology for highly efficient projection systems requiring a high color rendering index”, stressed Dr. Andreas Löffler, Project Manager at Osram Opto Semiconductors. After all, a high color rendering index or an increased color gamut means a more vivid, higher-quality image.

Luminous flux and efficacy as a function of operating current for a InGaN-based green LED and a conversion LED.

Source: Osram

Record-breaking efficacy of >200 lm/W achieved with a green full conversion phosphor solution

The second approach of the project, which was to create a new, even more efficient green LED, comes into play in cases where the spectral bandwidth of the LED is not critical. Record-breaking figures demonstrated were 209 lm/W (210 lm) with a chip size of 1mm2, a central wavelength of 540 nm, a forward voltage of 2.88 V and a driving current of 350 mA (current density: 45 A/cm²). For a current density of 125 A/cm2, it proved possible to increase the light output to above 500 lm. Despite this high current density, the efficacy of these devices amounts to 160 lm/W. The efficacy peaks at 1.5 A/cm² with a maximum of 274 lm/W. According to Osram research engineer Dr. Thomas Lehnhardt, these exceptional performance figures have been achieved thanks to the optimized interaction of chip and converter technologies: “Continuous improvement of the blue LED chips, an optimized excitation wavelength and an increased degree of conversion of the phosphor converter are the winning combination underlying the new record-breaking LED.”

From prototypes to series production

At the moment, the unprecedented figures achieved by the two LED prototypes still can only be ranked as development data. Further time will be needed to develop products based on the findings of the research project with optimized price and performance and which are well suited for mass production.

Leave your comment
No comments yet.
Lighting Community
Lighting forum
Creating OLED Light Fixtures with 3D Printing

Upcoming Events

Shanghai Int'l Lighting Expo
The 3rd edition of Shanghai International Lighting Fair (SILF) has ended with record-breaking results in visitor number. Figures continue to climb in the show’s third year, drew in 11,958 visitors (2015: 11,676), a 2.42% increase over last year, including designers, planners, system integrators, engineers, builders and many other project-based buyers from 49 countries and regions.
LED and Semiconductor Expo
LED & Semiconductor Expo is the acclaimed professional industry event that attracts the world’s top LED manufacturers. The event attracts about 400 LED manufacturers presenting the most complete LED manufacturing chain including LED semiconductor lighting,
BIEL Light + Building Buenos Aires
BIEL Light + Building Buenos Aires is the most important international event for the electric, electronic and lighting industry of Latin America. Currently, it is consider a leader in the Spanish-speaking sector.
Australian Smart Lighting Summit
Following on from the success of the 2016 Summit, the Australian Smart Lighting Summit 2017 profiles new developments in street, urban, outdoor and public street lighting projects. In its fifth year, this cutting-edge lighting Summit attracts over 150 delegates annually, with over 30 expert speakers from across Australia

New manufacturers

Fairs partners